男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Stanford researchers create artificial nerve system for robots

Xinhua | Updated: 2018-07-06 09:43
Share
Share - WeChat

SAN FRANCISCO -- Researchers from Stanford University and Seoul National University have developed an artificial sensory nerve system that can potentially enable robots and prosthetic devices to have a sense of touch, Stanford said in a statement May 31.

The Science journal, which published the latest results of the study in a paper on May 31, describes how the researchers constructed an artificial sensory nerve circuit that could be embedded in a future skin-like covering for neuro-prosthetic devices and soft robotics.

The study was led by Zhenan Bao, professor of chemical engineering at Stanford, in partnership with Tae-Woo Lee of Seoul National University, who spent his sabbatical year in Bao's Stanford lab to initiate the collaborative work focused on an artificial synaptic transistor modeled after human synapses.

The artificial nerve circuit consists of three integrated components -- a touch sensor that can detect minuscule forces, a flexible electronic neuron that receives signals from the touch sensor, and the artificial synaptic transistor modeled from human synapses.

"Biological synapses can relay signals, and also store information to make simple decisions," said Lee, who was a second senior author of the paper. "The synaptic transistor performs these functions in the artificial nerve circuit."

"This artificial sensory nerve system is a step toward making skin-like sensory neural networks for all sorts of applications," said Bao, who is one of the senior authors of the paper.

The researchers described in their paper how the electronic neuron delivered signals to the synaptic transistor, which was engineered to have the ability of learning how to recognize and react to sensory inputs based on the intensity and frequency of low-power signals, just like a biological synapse.

In their experiment, they even managed to activate the twitch reflex in a cockroach and identify letters in the Braille alphabet.

The latest milestone in the work of Bao and her team is part of her long-standing pursuit to imitate how skin can stretch, repair itself and act like a smart sensory network that knows not only how to transmit pleasant sensations to the brain, but also react reflexively to make prompt decisions when the muscles receive signal order.

The researchers say artificial nerve technology remains in its infancy, but they hope to create low-power, artificial sensor nets to cover robots to make them more agile upon feedback received in the same way as human skin works.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 景洪市| 宁津县| 新沂市| 晋江市| 宁海县| 仙游县| 灌云县| 中卫市| 青海省| 乌鲁木齐县| 高淳县| 扶沟县| 安丘市| 如东县| 金华市| 尚志市| 浦东新区| 苍梧县| 木兰县| 台东县| 永胜县| 安国市| 元氏县| 永登县| 绥滨县| 临漳县| 屏东县| 牙克石市| 和平县| 陇西县| 遂宁市| 开原市| 尤溪县| 汉寿县| 洪洞县| 诸暨市| 万载县| 游戏| 北宁市| 镇坪县| 临夏县| 佳木斯市| 陆河县| 永胜县| 松阳县| 阜宁县| 甘孜县| 中山市| 克什克腾旗| 海丰县| 阿荣旗| 筠连县| 商河县| 罗平县| 绥阳县| 突泉县| 邢台县| 黄平县| 永寿县| 普兰店市| 米脂县| 雷山县| 东山县| 盘锦市| 牡丹江市| 紫金县| 玉屏| 永康市| 杂多县| 淄博市| 岑溪市| 定襄县| 嘉善县| 南漳县| 泽普县| 平遥县| 保康县| 延吉市| 望城县| 余干县| 油尖旺区| 清远市|