男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Device to help paralyzed walk again developed

With breakthrough implant, patients can regain control of leg muscles

By ZHOU WENTING in Shanghai | China Daily | Updated: 2024-10-08 10:05
Share
Share - WeChat

By implanting electrodes in the brain and spinal cord to build a "nerve bypass" system between the two body parts, scientists from Fudan University in Shanghai have reached a breakthrough in brain-spine interface research, creating a device that could enable paralyzed people to walk again.

Using the device, people who are paralyzed due to spinal cord injuries could regain control of the muscles in their lower limbs so that they can stand and walk, said the researchers from the Institute of Science and Technology for Brain-Inspired Intelligence of Fudan University.

Jia Fumin, the lead researcher, said that clinical trials are expected to kick off at a domestic tertiary hospital later this year.

The spinal cord functions as a high-speed channel connecting the brain and the peripheral nervous system. If the spinal cord is damaged, instructions from the brain telling muscles to move can't be transmitted, causing paralysis. Since nerve injury is irreversible, current treatments for such patients are limited.

A national report released by a number of institutions, including the China Association of Persons with Physical Disability, last September showed that there were 3.74 million patients with spinal cord injuries in China, and there are about 90,000 new cases in the country each year.

Last year, a research team from the Swiss Federal Institute of Technology in Lausanne carried out brain-spinal interface research on paralyzed patients.

By collecting and decoding brain signals, electrically stimulating relevant areas of the lower limbs, and connecting the brain and spinal cord nerve pathways, they were able to help paralyzed patients with spinal cord injuries regain control of their muscles and walk.

However, challenges remained, including decoding electrical activity in the brain, reconstructing spinal cord nerve roots, and facilitating system integration and clinical application.

"In response to these problems, we devised a new generation of devices that allow the brain-spinal interface to be highly precise, and they come with high throughput and low latency," Jia said.

For example, the device can precisely stimulate the nerve roots of the spinal cord and alternately activate the corresponding muscle groups of the lower limbs so that a patient can walk more naturally.

Moreover, to ensure a smooth walking process, the device makes real-time adjustments of the stimulation parameters acting on the spinal cord according to a patient's posture and movements of their lower limbs.

"Integrating multimodal technologies, such as infrared motion capture, electromyography, inertial sensors and plantar pressure pads, our team constructed a data set of healthy walking postures as well as a variety of abnormal postures, and established an algorithm model, so that we achieved high-performance tracking of continuous walking postures," Jia said.

Compared with the Swiss team's research, which required patients to have three devices implanted in their brain hemispheres for brain signal collection and spinal cord stimulation, Jia's team integrated the devices into one single tiny device implanted in the brain to reduce the number of postoperative wounds.

Such a solution can also shift the decoding process from outside the body to within the body, which can improve the stability and efficiency of brain signal collection and achieve a decoding speed of brain signals and stimulation instruction output that are similar to that of a normal ambulatory person, the researchers said.

"This means that in the future, the walking postures of patients with spinal cord injuries will be more natural and smooth," Jia said.

Top
BACK TO THE TOP
English
Copyright 1994 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 北宁市| 句容市| 酒泉市| 肃宁县| 益阳市| 澄江县| 洛宁县| 达日县| 庆云县| 西丰县| 长泰县| 雅江县| 仁布县| 文安县| 吉木乃县| 许昌县| 东海县| 丰台区| 皮山县| 兴业县| 峡江县| 塔河县| 班戈县| 滁州市| 民勤县| 廊坊市| 合山市| 黄梅县| 静乐县| 隆林| 屯留县| 乐陵市| 嘉兴市| 宣武区| 于都县| 大田县| 高邮市| 普格县| 胶州市| 汉川市| 东港市| 潞西市| 微博| 科技| 辉南县| 延寿县| 长治市| 读书| 河间市| 涟源市| 顺昌县| 宁武县| 互助| 平顶山市| 赞皇县| 长宁区| 宜昌市| 寿光市| 勐海县| 兴文县| 东兰县| 淅川县| 峨眉山市| 玛曲县| 保定市| 夹江县| 美姑县| 浑源县| 简阳市| 宁德市| 九龙坡区| 淮南市| 贡觉县| 阿瓦提县| 旌德县| 琼中| 自治县| 岱山县| 商洛市| 定西市| 三穗县| 正镶白旗|