男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

More zebrafish to swim in China's space station

Xinhua | Updated: 2025-01-15 10:18
Share
Share - WeChat

SHANGHAI -- In 2025, six zebrafish are set to journey to China's space station, assisting scientists in exploring how the space environment impacts the muscle and skeletal development of vertebrates. This research is expected to bolster long-term human survival in space and pave the way for interplanetary habitation.

A "fishbowl" in China's Tiangong Space Station will house six zebrafish and six grams of Ceratophyllum this year, according to Wang Gaohong from the Institute of Hydrobiology of the Chinese Academy of Sciences, who spoke to Xinhua on Monday. The study will focus on the impact of microgravity on the proteins in the zebrafish's bones and muscles. Once the experiment comes to a close, the fish will be frozen and brought back to Earth for further analysis.

In April 2024, a container with four zebrafish and four grams of Ceratophyllum was sent to the space station by Shenzhou XVIII manned spaceship, forming China's first space-based self-sustaining aquatic ecosystem. This space aquatic ecosystem ran smoothly for about 43 days, setting a global record for the longest operational duration of such a system.

"The typical lifespan of zebrafish is two to three years. Therefore, their 43 days in space is equivalent to a human spending three to four years there," said Wang, who is in charge of the experiment.

The "Tiangong fishbowl" currently in development has a volume of only 1.2 liters, equivalent to two bottles of drinking water. Conducting long-term breeding experiments for zebrafish in such a small space presents various challenges. To address these issues, researchers dedicated three to four years on Earth to preparation and planning.

Just as astronauts face rigorous selection, so do the zebrafish bound for space. "The four zebrafish that entered the space station were selected from 200 candidates. They need to be adults in good health, and they also need to have a stable temperament and be compatible with one another," Wang said.

When the first images from the "Tiangong fishbowl" were transmitted back to Earth, Wang was elated. "We left a bit of air in the container. In space, it mixed with the water and created beautiful bubbles, resembling a crystal palace."

During the 43-day space experiment, Wang and fellow scientists monitored the "Tiangong fishbowl" around the clock from Earth.

They observed that the Ceratophyllum and zebrafish initially showed instability in various metrics but gradually self-regulated and adapted to each other. The Ceratophyllum maintained robust photosynthetic activity throughout its stay in orbit.

Initially, the zebrafish displayed abnormal spatial behaviors, such as upside-down swimming and circling. "Like humans, fish cannot discern up from down in microgravity, leading to disoriented movement," Wang explained.

The water samples collected from this space aquatic ecosystem returned to Earth with the Shenzhou-18 spacecraft in November 2024, and scientists are now delving deeper into their analysis.

Zebrafish share a high genomic similarity with humans. They are small, reproduce rapidly, and have a short development cycle, making them a prime model organism in life sciences. They're widely utilized in research spanning various fields, including hematopoiesis, cardiovascular health, kidney, skeletal systems, tumor and epilepsy.

Microgravity in space can induce a range of pathophysiological phenomena in humans, such as cardiovascular issues, weakened immunity, bone loss, muscle atrophy, and hormona imbalances. Understanding these effects is a key scientific endeavor in space biology. This study will enhance our collective understanding of how the space environment impacts genes, cells, and overall life.

This study has laid a strong foundation for research on astronaut health using zebrafish as a model, Wang said. "Looking ahead, as humans contemplate leaving Earth for other planets, sustainable life support is crucial. Aquatic creatures like fish and shrimp, with their high feed conversion rates, could be an ideal source of protein."

Top
BACK TO THE TOP
English
Copyright 1994 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 介休市| 新建县| 孝义市| 孟津县| 城市| 高平市| 道真| 广宁县| 伊金霍洛旗| 饶平县| 兰坪| 新余市| 鱼台县| 尉犁县| 繁昌县| 周宁县| 辽阳市| 房产| 醴陵市| 饶河县| 手游| 色达县| 乐业县| 通辽市| 孟津县| 若尔盖县| 汝城县| 加查县| 财经| 江孜县| 麦盖提县| 浙江省| 包头市| 西乌珠穆沁旗| 宁波市| 民勤县| 黔西县| 资溪县| 五峰| 化州市| 齐齐哈尔市| 廉江市| 台东县| 长兴县| 抚州市| 湘潭县| 凭祥市| 平南县| 太和县| 清徐县| 忻州市| 安平县| 罗甸县| 正阳县| 贵州省| 黄浦区| 富平县| 凤台县| 五指山市| 莫力| 高阳县| 颍上县| 双桥区| 廊坊市| 依安县| 青浦区| 新密市| 准格尔旗| 宜良县| 六安市| 新余市| 灵丘县| 南郑县| 许昌市| 花莲县| 襄城县| 重庆市| 明星| 调兵山市| 德州市| 通辽市| 巨鹿县|