男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

Chinese researchers develop movable electrode for more advanced brain-computer interfaces

Xinhua | Updated: 2025-09-21 09:13
Share
Share - WeChat

BEIJING -- A team of Chinese scientists has developed a new, soft and movable implantable electrode that could overcome some of the biggest challenges holding back brain-computer interfaces.

The study, led by researchers from the Shenzhen Institutes of Advanced Technology (SIAT) under the Chinese Academy of Sciences and Donghua University, which is located in Shanghai, was recently published in the journal Nature.

According to the study, most neural implants rely on rigid, static electrodes that remain fixed once surgically placed. This immobility severely limits their performance -- they can only capture signals from a single site, while neural and muscular activities often shift across time and space. As a result, important information may be missed, and the overall quality of monitoring gradually declines.

If researchers or clinicians wish to adjust an electrode's position to locate stronger or more relevant signals, additional invasive surgery is usually required -- which results in new risks and further burdens for patients. These challenges have restricted both the adaptability and long-term use of brain-computer interfaces.

The new device developed by the Chinese team, named NeuroWorm, represents a radical shift. Inspired by the flexible movement and segmented body of an earthworm, it is a soft, thread-like fiber roughly twice the width of a human hair. Despite its tiny size -- it can carry up to 60 individual sensors along its length.

A key innovation is its ability to move after being implanted. A small magnetic tip attached to NeuroWorm allows researchers to wirelessly steer it through brain tissue or along muscles using external magnetic fields. This means a single implant can actively explore different areas to find the best signals -- instead of being stuck in one place.

In experiments, the team guided NeuroWorm through a rat's leg muscle via a very small incision. They used magnets to move it each day for a week -- and it successfully recorded clear and stable muscle signals from different locations. In another test, a single NeuroWorm implanted in a rat for over 43 weeks continued to work perfectly, with minimal scar tissue formation compared to traditional rigid devices. The team also steered the device deep into a rabbit's brain, capturing high-quality neural signals along the way.

This breakthrough offers a path toward more dynamic and less invasive bioelectronic interfaces, said Liu Zhiyuan, a professor at the SIAT.

The NeuroWorm platform could lead to smarter, longer-lasting and more effective applications in areas like advanced prosthetics, the mapping of brain activity for epilepsy, and managing chronic neurological diseases, Liu added.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 揭东县| 新晃| 冷水江市| 阳东县| 汤阴县| 微博| 阜城县| 江都市| 郯城县| 罗定市| 会理县| 汉中市| 合川市| 页游| 紫金县| 濮阳市| 凤翔县| 萍乡市| 通辽市| 喀喇| 南开区| 长兴县| 秦安县| 中西区| 阿瓦提县| 台东县| 新安县| 陇西县| 清苑县| 信丰县| 额尔古纳市| 玉林市| 收藏| 海盐县| 云阳县| 河南省| 武强县| 始兴县| 濉溪县| 奎屯市| 广西| 闵行区| 布拖县| 沭阳县| 佛坪县| 台中县| 仙游县| 吉首市| 密云县| 乌恰县| 岱山县| 伊川县| 竹溪县| 大方县| 苍溪县| 北碚区| 罗江县| 忻城县| 宜宾县| 句容市| 阿合奇县| 渝北区| 凉城县| 元朗区| 黎城县| 亳州市| 鹤庆县| 武清区| 山西省| 丰镇市| 上杭县| 西林县| 山东| 泾阳县| 阿坝县| 尼木县| 泸水县| 嫩江县| 广宁县| 安多县| 崇礼县| 灵璧县|