男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
US EUROPE AFRICA ASIA 中文
Business / Technology

Scientists identify possible driver of aging progression

(Xinhua) Updated: 2015-05-06 09:12

Chinese and US researchers working on a premature aging disorder said at the end of April that changes in heterochromatin, a tightly packed form of DNA, could be blamed for the aging process in humans.

The findings, made possible through a combination of cutting-edge stem cell and gene-editing technologies, could lead to methods of preventing and treating age-related diseases such as cancer, diabetes and Alzheimer's disease, the researchers reported in the US journal Science.

"We proposed a new theory that suggests the disorganization of heterochromatin is a key driver of human stem cell aging," said senior author Liu Guanghui of the Institute of Biophysics at the Chinese Academy of Sciences in Beijing.

Liu called their work "an important supplement" to current aging theory, which proposes that aging is a consequence of the accumulation of naturally occurring DNA damage.

In the study, scientists at the Salk Institute and the Chinese Academy of Sciences looked at Werner syndrome, a genetic disorder that causes people to age more rapidly than normal.

Werner syndrome affects around one in every 200,000 people in the United States. People with the disorder suffer age-related diseases early in life, including cataracts, type II diabetes, hardening of the arteries, osteoporosis and cancer, and most die in their late 40s or early 50s.

The disease is caused by a mutation to the Werner syndrome RecQ helicase-like gene, known as the WRN gene for short, which generates the WRN protein, so the researchers created a cellular model of Werner syndrome by using a cutting-edge gene-editing technology to delete the WRN gene in human stem cells.

The resulting cells mimicked the genetic mutation seen in Werner syndrome patients, so the cells began to age more rapidly than normal. On closer examination, the researchers found that the deletion of the WRN gene led to disruptions to the structure of heterochromatin, pointing to an important role for the WRN protein in maintaining heterochromatin.

In further experiments, they showed that the protein interacts directly with molecular structures known to stabilize heterochromatin, revealing a kind of smoking gun that, for the first time, directly links mutated WRN protein to heterochromatin destabilization.

Finally, they compared stem cells isolated from six young and six elderly individuals and found a marked downregulation of WRN protein and a decrease in the level of heterochromatin derived from old individuals, further suggesting that accumulated alterations in the structure of heterochromatin may be a major underlying cause of cellular aging.

"This has implications beyond Werner syndrome," senior author Juan Carlos Izpisua Belmonte of the Salk Institute said in a statement. "It identifies a central mechanism of aging-heterochromatin disorganization-which has been shown to be reversible."

Belmonte said more studies would be needed to fully understand the role of heterochromatin disorganization in aging, including how it interacts with other cellular processes implicated in aging.

Hot Topics

Editor's Picks
...
主站蜘蛛池模板: 滨州市| 耿马| 修水县| 额尔古纳市| 霞浦县| 松阳县| 山东| 平湖市| 镇坪县| 朝阳市| 武鸣县| 资中县| 色达县| 江阴市| 西城区| 黔南| 和顺县| 大荔县| 陇西县| 宁夏| 通州区| 壶关县| 娄底市| 阳城县| 龙门县| 定州市| 固安县| 赤峰市| 镇赉县| 桐梓县| 江安县| 五指山市| 盈江县| 内黄县| 寿宁县| 泾阳县| 城固县| 新密市| 青海省| 颍上县| 丽水市| 会泽县| 辽阳县| 奉化市| 义马市| 郓城县| 巨野县| 广平县| 山阴县| 宁德市| 万荣县| 巴青县| 玉环县| 衡南县| 利津县| 彝良县| 景东| 上饶县| 神木县| 庆安县| 安溪县| 石渠县| 永宁县| 鲁甸县| 桂阳县| 竹山县| 启东市| 敦煌市| 来安县| 安国市| 麻城市| 安宁市| 台东市| 林甸县| 英德市| 东安县| 旌德县| 东兰县| 禹城市| 酒泉市| 丰顺县| 乡宁县|