男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
World
Home / World / China-Europe

Chemists make clean fuel breakthrough

By Angus McNeice in London | China Daily UK | Updated: 2018-11-01 01:49
Share
Share - WeChat

Scientists are now one step closer to finding an efficient way to convert waste carbon dioxide into clean fuel following a breakthrough from researchers in the United Kingdom and China.

Chemists from Liverpool University and the Beijing Computational Science Research Center have developed a laser-powered technique that sheds light on the chemical reactions necessary to make fuel from carbon dioxide, or CO2.

Currently, the vast majority of CO2 generated through the burning of fossil fuels escapes into the atmosphere as a waste product. This contributes to climate change because CO2 is a greenhouse gas.

Scientists have long theorized that this waste CO2 could instead be captured on an industrial scale and converted into energy sources such as methane, thereby reducing carbon emissions and creating fuels that burn cleaner than coal and oil.

Chemists have been converting CO2 into fuel - via a process called electrochemical reduction – since the 19th century, but as yet no method has proven sufficiently energy-efficient to reach commercialization.

In electrochemical reduction, electrical energy breaks up the CO2 molecule with the aid of materials called electrocatalysts. Further chemical reactions lead to the formation of new molecules, including methane and ethanol. These fuels are already widely used in industry, and produce less emissions than petroleum when burned.

The electrocatalysts form an essential part of the reduction process, but the mechanisms by which they operate are poorly understood, making it hard for researchers to design more efficient systems.

"We don't understand the key design rules," said Alexander Cowan, a chemist at Liverpool University who worked on the study. "What makes a good electrocatalyst? Why do some work well and some work badly? These questions need to be addressed. What we hope is that the experiment we have been working on will provide those fundamental pieces of information."

Using a technique called vibrational sum-frequency generation spectroscopy, which utilizes lasers, the team at Liverpool was able to observe a particular electrocatalyst and its associated chemical reactions in great detail. The data was then sent to researchers at the Beijing Computational Science Research Center, who conducted theoretical study to support the interpretation of the experimental work.

"This is an important next step towards commercializing the process of electrochemical CO2 conversion into clean fuel technologies," said Gaia Neri, a researcher at Liverpool University and lead author on the study published in the journal Nature.

Cowan said that converting CO2 into fuel will remain a valuable tool even as industries decrease reliance on fossil fuels.

"Even if we completely decarbonize electricity, we are still going to have CO2 being produced," Cowan said. "We are still going to have cement factories, steel works and breweries. We can either look at CO2 as a waste product, or we can convert this molecule and make it into something useful."

Other recent projects have shown promise in the quest to create energy from CO2. In 2016, Chinese chemist Yang Song led a team of researchers at Oak Ridge National Laboratory in the United States that successfully converted CO2 into ethanol using copper nanospikes.

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 浠水县| 梁山县| 合水县| 浪卡子县| 浦县| 大足县| 庆安县| 元阳县| 长乐市| 龙胜| 绥棱县| 太康县| 吐鲁番市| 德庆县| 尚志市| 大连市| 六枝特区| 龙海市| 泉州市| 张家川| 礼泉县| 随州市| 蒲江县| 马边| 长宁县| 台中市| 山丹县| 汝州市| 云浮市| 丹凤县| 西乌珠穆沁旗| 石首市| 营山县| 常德市| 双流县| 陇川县| 筠连县| 昌乐县| 临汾市| 漾濞| 恩平市| 萝北县| 新绛县| 赫章县| 鸡东县| 重庆市| 香河县| 睢宁县| 定日县| 伊金霍洛旗| 牟定县| 张掖市| 崇文区| 高碑店市| 舟曲县| 灵台县| 彭水| 湟中县| 望城县| 扶余县| 渝中区| 宁波市| 仪陇县| 汉川市| 铜川市| 新野县| 康平县| 绥化市| 万宁市| 桂阳县| 青海省| 三都| 金堂县| 阳山县| 潢川县| 镇江市| 保定市| 宁河县| 曲阜市| 辉南县| 蕲春县| 乐东|