男女羞羞视频在线观看,国产精品黄色免费,麻豆91在线视频,美女被羞羞免费软件下载,国产的一级片,亚洲熟色妇,天天操夜夜摸,一区二区三区在线电影
Global EditionASIA 中文雙語Fran?ais
China
Home / China / Innovation

China's High Energy Photon Source enters final construction phase

By Yan Dongjie | chinadaily.com.cn | Updated: 2025-03-27 18:40
Share
Share - WeChat
The civil construction of HEPS campus is completed. [Photo provided to chinadaily.com.cn]

China's flagship synchrotron radiation facility, the High Energy Photon Source, has entered its final construction stage as it began the joint-commissioning phase, the Institute of High Energy Physics of the Chinese Academy of Sciences announced Thursday.

As one of China's key scientific facilities, HEPS occupies an area approximately equal to 90 football fields, but its mission is to illuminate the microscopic world at the nanometer scale.

It will be a fourth-generation synchrotron radiation facility and China's first high-energy light source designed to offer the highest brightness in the world, which is expected to start operation by the end of this year.

In March 2023, the first electron beam of HEPS was achieved via the Linac with the energy of 500 MeV. [Photo provided to chinadaily.com.cn]

It will serve as a research platform for material science, chemical engineering, biomedicine and other fields, said professor Pan Weimin from IHEP, director of the HEPS project.

Pan said that emittance is a critical parameter evaluating electron beam quality, while HEPS achieved a world-class electron beam emittance of 93 pm·rad in its storage ring this January, following a beam current exceeding 40 mA. The facility is able to produce the world's top high-quality bright synchrotron radiation.

"Lower emittance reduces lateral divergence of the electron beam, thereby producing brighter synchrotron radiation," he said.

In November 2023, the electron beam of HEPS was achieved more than 5 nC of bunch charge at 6 GeV via the booster. [Photo provided to chinadaily.com.cn]

HEPS is designed with accelerators, beamlines, end stations and support facilities. The IHEP started the construction in Huairou district in Beijing in 2019.

"The facility is built on 3 meters of plain concrete and 0.8 meters of reinforced concrete, which integrates the entire structure and achieves the goal of micro-vibrations of less than 25 nanometers during operation. In a regular building, even a simple foot stomp could cause nearby equipment to vibrate at the micron level," Pan said, adding that many technical bottlenecks were overcome during the construction process.

The storage ring of the facility is equipped with 1,776 magnets of various colors, which control the electron beam to stably run at high speeds within a thumb-width vacuum track.

On July 1, 2024, the last shielded bellows was installed in the tunnel, completing the installation of the HEPS storage ring and signifying that all components of the storage ring have been linked up. [Photo provided to chinadaily.com.cn]

The narrowest part of this electron track has a diameter of only two to three millimeters. During the construction of the facility, the installation of the vacuum boxes was prone to slight deformations.

"After repeated experiments, we found that the solution was surprisingly simple—by letting the products sit for a week or two after receiving them, until the metal stress is released, the problem is effortlessly resolved," Pan said in an interview with Beijing Daily.

On October 12, 2024, the high-energy synchrotron light from the W73 undulator in the HEPS storage ring was accurately delivered to the end station of HXI High Energy Imaging beamline, located 350 meters away. [Photo provided to chinadaily.com.cn]

The Hard X-ray Imaging (HXI) beamline, among the first set of beamlines constructed, is highlighted as one of the distinctive experimental platforms aimed at studying internal microstructures in engineering materials.

"This large facility is like an oversized X-ray machine, with its emitted light reaching an energy of up to 300 keV, capable of penetrating several centimeters of steel," said Dong Yuhui, HEPS executive deputy director.

Compared to a regular X-ray machine, its brightness is a trillion times greater, enabling us to see the microscopic world much more clearly, he said.

"HEPS can assist researchers in completing previously impossible tasks across fields from aerospace and nanotechnology to biomedicine and new materials development," he said.

Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
 
主站蜘蛛池模板: 龙里县| 会宁县| 中江县| 邢台市| 乐陵市| 丰台区| 文安县| 吉木萨尔县| 龙口市| 滁州市| 比如县| 辽阳市| 乾安县| 贵州省| 东宁县| 晋江市| 安岳县| 闸北区| 漳州市| 磐石市| 博罗县| 香河县| 凤凰县| 济宁市| 积石山| 罗江县| 扎兰屯市| 夹江县| 湄潭县| 罗平县| 临夏市| 色达县| 泽库县| 交口县| 罗平县| 台江县| 甘谷县| 吉水县| 穆棱市| 临高县| 桑植县| 海兴县| 平原县| 吉隆县| 泗洪县| 雷波县| 仁化县| 共和县| 两当县| 错那县| 油尖旺区| 镇坪县| 玛纳斯县| 措美县| 牙克石市| 文安县| 六安市| 清水县| 晋江市| 牟定县| 白沙| 娄烦县| 兰西县| 中牟县| 绥德县| 马山县| 开江县| 株洲市| 维西| 永平县| 高密市| 阿坝| 淮阳县| 兴隆县| 高陵县| 秀山| 镶黄旗| 潍坊市| 桑植县| 惠州市| 元阳县| 永泰县|